B. Math. I Year First Semester 2000 - 2001 Back Paper / Analysis

1. a) Find $\lim_{n \to \infty} \frac{2n^{3/2} + 5}{5n - 17}$. b) Find $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n^2}$. [5+5]

2. If $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ is convergent, prove that $\sum_{n=1}^{\infty} \frac{a_n^2}{a_n+1}$ is convergent.

3. Prove that $\forall x \in \mathbb{R}, \sum_{n=1}^{\infty} \frac{x^n}{(n!)^2}$ is absolutely convergent. [5]

[5]

4. Prove that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1]. [10]

5. The function $f(x) = x^2$ is Riemann integrable on [0, 1]. Justify this by quoting an appropriate theorem. Find $\int_0^1 x^2 dx$ from first principles.

6. Find the third Taylor polynomial of $f(x) = e^x \sin x$ around a = 0. Use this to evaluate f(0.001). Estimate the maximum error involved in this method.

7. If
$$f(x) = \int_{x}^{x+1} g(t)dt$$
. Find $f'(x)$. [10]

8. If $f \ge 0$ on [0, 1] and continuous. Prove that $\int_0^1 f(t)dt = 0$ iff $f \equiv 0$.

- 9. Give an example of $f \ge 0$ on $[0, \infty)$, such that f is unbounded but $\int_{0}^{\infty} f(t)dt$ is finite. [10]
- 10. If f_n is a sequence of continuous functions on [0,1], such that $f_n(x) \to 0$ for each x, does it follow $\int_0^1 f_n(x) dx \to 0$. If true, prove it. If false, give a counter example.